2D Gaussian distribution
For 2D image, assume $\sigma_x=\sigma_y=\sigma$, and
Then,
Under polar coordinates $(r, \theta)$, we have $r^2=x^2+y^2$, $rdrd\theta=dxdy$. So,
So, different energy at corresponding R is presented by $-{\rm exp}(-\frac{r^2}{2\sigma^2})|_{0}^{\sigma}$: